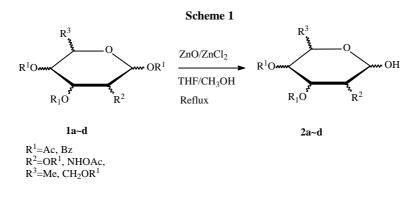
A Facile Approach to Regioselective 1-O-Deacylation of Peracylated Glycopyranoses


Jia Qiang DONG, Shu Jia ZHANG, Yan Guang WANG*

Department of Chemistry, Zhejiang University, Hangzhou 310027

Abstract: The regioselective 1-*O*-deacylation of peracylated glycopyranoses **1a-d** with zinc chloride and zinc oxide in THF/MeOH gave the corresponding tetra-*O*-acylglycopyranoses **2a-d** in good yields.

Keywords: 1-Hydroxy sugars, oligosaccaride, zinc chloride.

Suitably 1-hydroxy sugars are important materials and valuable building blocks for the preparation of various glycosyl donors in the synthesis of oligosaccharides and glycoconjugates¹⁻³. The hydrolysis of acylglycosyl halides was a classical method for preparation of 1-OH peracylated glycopyranoses⁴. This method involves a two-step reaction sequence in which in the first step, D-glycopyranose pentaacetates are converted to unstable glycosyl halides, and in the second step, the halides are hydrolyzed in the presence of expensive reagents like silver carbonate or nitrate. Recently, Cushman and co-workers⁵ reported a convenient synthetic method for regioselective 1-*O*-acyl hydrolysis of peracylated glycopyranoses with HgO/HgCl₂. However, this protocol required highly toxic reagents (HgO and HgCl₂) and a prolonged reaction time (2 days). Here we disclose a new synthetic method of 1-hydroxy sugars *via* a regioselective deacylation of peracylated glycopyranoses 1a~d with ZnO/ZnCl₂ system (Scheme 1).

*E-mail: orgwyg@css.zju.edu.cn

As shown in **Scheme 1**, we used ZnO/ZnCl₂ system as the deacylation reagent. The reaction could smoothly performed in THF-CH₃OH (4:1) under reflux. The optimized reaction time was found to be 3~6 h. A prolonged reaction time resulted in the formation of side-products. The results are summarized in **Table 1**.

Compd.	R^1	\mathbb{R}^2	\mathbb{R}^3	Solvents (4:1)	Time (h)	Yield (%)	MS (M+Na) ⁺
2a	Ac	OAc	CH ₂ OAc	acetone/H2O	48	63	371.6
2a	Ac	OAc	CH ₂ OAc	THF/MeOH	6	84	371.6
2b	Bz	OBz	CH_2OBz	acetone/H ₂ O	48	53	619.3
2b	Bz	OBz	CH_2OBz	THF/ MeOH	6.5	75	619.3
2c	Ac	OAc	Me	THF/ MeOH	4.5	82	313.5
2d	Ac	NHAc	CH ₂ OAc	THF/ MeOH	3.5	77	370.3

Table 1 1-O-Deacylation of peracylpyranose

A typical procedure for compound **2a**: To a stirring mixture of 1,2,3,4,6-penta-O-acetyl- β -D-glycopyranose (**1a**, 1.56 g, 4 mmol) and ZnO(1.40 g, 17.2 mmol) in THF-MeOH (30 mL:10 mL) was added dropwise a solution of ZnCl₂(1.64 g, 12 mmol) in THF(10 mL) at room temperature. The reaction mixture was refluxed for 6 h, then cooled to room temperature, filtered through celite, and concentrated under reduced pressure. The residue was extracted with CH₂Cl₂, washed with aq. NaHCO₃ and water, dried over MgSO₄. After removing the solvent, the resulting residue was purified by column chromatography on silica gel to give pure **2a** (1.17 g, 84%) as a syrup. ¹HNMR (500MHz, CDCl₃, δ_{ppm}): 5.55(t, 1H), 5.47(d, 1H, J=3.4Hz), 5.09(t, 1H), 4.91(dd, 1H, J=3.1, 10.2 Hz), 4.27(m, 1H), 4.23(d, 1H, J=4.1 Hz), 4.14(m, 1H), 2.14(s, 3H), 2.11(s, 3H), 2.05(s, 3H), 2.03(s, 3H).

In conclusion, we have developed a facile and efficient method for the preparation of 1-hydroxy-tetra-*O*-acylated glycopyranoses **2** *via* a regioselective deacylation of peracylated glycopyranoses **1** with ZnO/ZnCl₂ under mild conditions.

References

- 1. H. Paulsen, Angew. Chem., Int. Ed. Engl., 1990, 29, 823.
- 2. F. Barresi, O. Hindsgaul, J. Carbonhydr. Chem., 1995, 14, 1043.
- R. R. Schmidt, W. Kinzy, Adv. Carbohydr. Chem. Biochem., 1994, 50, 21. and references therein.
- (a) O. T. Schmidt, J. Herok, *Liebigs Ann. Chem.*, 1954, 587, 63. (b) W. A. Bonner, *J. Am. Chem. Soc.*, 1958, 80, 3372.
- 5. T. Sambaiah, P. E. Fanwick, M. Cushman, Synthesis, 2001, 10, 1450.

Received 29 April, 2002